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Introduction



Iterative reconstruction

Tomographic projection p is given by

Wx = p (1)

To recover x solve the following optimisation problem:

x r = arg min
x
‖p −Wx‖2

2 (2)

Kaczmarz: x (k) = x (k−1) − pi −W ix (k−1)

W T
i W i

W T
i

SIRT: x (k+1) = x (k) + CW TR(p −Wx (k))

+ Robust w.r.t. noise and limited angular range

– Computationally expensive
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Iterative reconstruction

x (k+1) = (1− CW TRW )︸ ︷︷ ︸
A

x (k) + CW TR︸ ︷︷ ︸
B

p

=
(

1 0
)(A B

0 1

)k (
0

p

)

Any linear iterative method (e.g., Kaczmarz, SIRT) can be written as

x (k+1) = Skp, (3)

Analytical methods (e.g. filtered backprojection) are also linear

operations on data p

Can we approximate iterative reconstruction results with faster analytical

methods?
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Algebraic filters



Filter optimisation

An analytical method A such as filtered backprojection (FBP) can be

written as

A(h,p) = W T
AChp

= W T
ACph,

where h is a filter

We can optimise this filter by solving an optimisation problem similar to

that in iterative methods

h∗ = arg min
h
‖p −WA(h,p)‖2

2

h∗ = arg min
h
‖p −WW T

ACph‖2
2 (4)

h∗ is the minimum-residual filter
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Advantages

Typical size of projection data is NθNd ∼ 106

Reconstruction volume size is N2 ∼ 106

• Filter size is Nd ∼ 103

• Filter dimension can be further reduced to O(logNd)

• Filter can be reused for similar noise experimental geometries and

noise statistics
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High-throughput applications

Time-resolved experiments

(tomography at synchrotrons)

Reconstructions of a fuel cell

(Bührer et al., 2019)

Continuous acquisition

(continuous-tilt electron tomography)

Tomograms of Bdellovibrio bacteriovorus

(Chreifi et al., 2019)

Data rates ∼ 10GB s−1 →
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Fourier-domain filters



Fourier slice theorem

P̃θ(ω) = F̃ (ω cos θ, ω sin θ)
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Fourier slice theorem

v

u
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Fourier domain algorithms

Marone, F., and M. Stampanoni. ”Regridding reconstruction algorithm for

real-time tomographic imaging.” (2012)

Steps in Gridrec

• filtering in Fourier space

• convolution with windowing

function

• interpolation in Fourier space

• 2D inverse FFT

• deapodisation

FBP backprojection: O(N2Nθ)

Gridrec 2D FFT: O(N2 logN)

Reconstruction times for Nθ projection angles
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Filter computation

• Compute minimum-residual filter

h∗ = arg min
h
‖p −WW TCph‖2

2

using projectors in Fourier domain

• Speed up filter computation by expanding in suitable basis
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Results — 1: phantom

Noisy sinogram

ramp filter our filter

Sinogram with few angles

ramp filter our filter

Mean squared error Structural similarity
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Results — 2: synchrotron data

  

(left to right) Gridrec reconstructions using a minimum-residual filter, the

Parzen filter, and additional phase retrieval
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High performance implementations

• Different implementations of the same algorithm result in

quantitatively different reconstructions

• Differences arise due to choice of discretisation and/or interpolation

• Mismatch between different backprojectors and real (physical)

forward operator

→ Compute minimum-residual filters for standard implementations

! Does not require knowledge of the implementation
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Implementation-specific filters



Results

Minimum-residual filters reduce the mismatch between operators

⇒ more quantitatively similar reconstructions

Foam phantom

Minimum-residual filter shapes
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Results

Pixelwise standard deviation in reconstructions

std{x strip
r , x line

r , x linear
r , x iradon

r , xgridrec
r }
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Results

Round-robin dataset from Tomobank
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Conclusions



Summary and outlook

• Analytical algorithms despite their inability to handle imperfect data

are widely used in practice because they are fast

• One way to improve reconstruction quality of these algorithms is

by computing a minimum-residual filter for the available data

• The filter, once computed, can be reused for experimental setups

where the projection geometry and noise levels are similar

• Implementation-specific filters reduce the mismatch between

forward and backprojection operators

• This leads to more quantitatively similar reconstructions

• Learn filter by optimising to more than one dataset

• More general approach for learning corrections to the backprojection

operator from data
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Thank you for your attention!

Poulami S Ganguly Ultra-fast reconstruction using Fourier domain filters 16


	Algebraic filters
	Fast real-space FBP reconstruction

	Fourier-domain filters
	Ultra-fast FFT-based reconstruction for high angle counts

	Implementation-specific filters
	Mitigate the influence of less accurate but fast backprojection operators


