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Introduction



Iterative reconstruction

Tomographic projection p is given by

Wx =p (1)
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x, = argmin |p — Wx(2 ©)
— W;x(k=1)
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Iterative reconstruction

Tomographic projection p is given by
Wx =p (1)

To recover x solve the following optimisation problem:

x, = argmin |p — Wx(2 ©)
— W;x(k=1)
Kaczmarz: x(K) = x(k=1) p’T—XW,T

SIRT: x(+1) = x() 1 cWTR(p — Wx™¥)

-+ Robust w.r.t. noise and limited angular range
— Computationally expensive
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Iterative reconstruction
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Iterative reconstruction

(k+1) _ _ T (k) T
x (1-cWTRW)x® + CWTRp
A B

a9 o) ()

Any linear iterative method (e.g., Kaczmarz, SIRT) can be written as

<D — 5,p, ()
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Iterative reconstruction

(k+1) _ _ T (k) T
x (1-cWTRW)x® + CWTRp
A B

a9 o) ()

Any linear iterative method (e.g., Kaczmarz, SIRT) can be written as

<D — 5,p, ()

Analytical methods (e.g. filtered backprojection) are also linear
operations on data p

Can we approximate iterative reconstruction results with faster analytical
methods?
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Algebraic filters




Filter optimisation

An analytical method A such as filtered backprojection (FBP) can be
written as

A(h,p) = W Chp
= W/ C,h,

where h is a filter
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Filter optimisation

An analytical method A such as filtered backprojection (FBP) can be
written as

A(h,p) = W Chp
= W/ C,h,

where h is a filter
We can optimise this filter by solving an optimisation problem similar to
that in iterative methods

h* = argmin | p — WA(h, p)|3

h* = arg min lp — WW  Cyh|5 (4)
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Filter optimisation

An analytical method A such as filtered backprojection (FBP) can be
written as

A(h,p) = W Chp
= W/ C,h,

where h is a filter
We can optimise this filter by solving an optimisation problem similar to
that in iterative methods

h* = argmin | p — WA(h, p)|3

h* = arg min lp — WW  Cyh|5 (4)

h* is the minimum-residual filter
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Advantages

Typical size of projection data is NgNy ~ 10°
Reconstruction volume size is N2 ~ 108
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Typical size of projection data is NgNy ~ 10°
Reconstruction volume size is N2 ~ 108

o Filter size is Ny ~ 103

e Filter dimension can be further reduced to O(log Ny)
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Typical size of projection data is NgNy ~ 10°
Reconstruction volume size is N2 ~ 108

o Filter size is Ny ~ 103
e Filter dimension can be further reduced to O(log Ny)

e Filter can be reused for similar noise experimental geometries and
noise statistics
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High-throughput applications

Time-resolved experiments
(tomography at synchrotrons)

P I A o ey e

2-4x microscope, 4 ms exp. time

2-4x microscope, 18.3 ms exp. time

Reconstructions of a fuel cell
(Biihrer et al., 2019)
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High-throughput applications

Time-resolved experiments Continuous acquisition

(tomography at synchrotrons) (continuous-tilt electron tomography)
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1 Flow field
_| plate
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g oy g o A

2-4x microscope, 18.3 ms exp. time

Tomograms of Bdellovibrio bacteriovorus
(Chreifi et al., 2019)

Reconstructions of a fuel cell
(Biihrer et al., 2019)

Data rates ~ 10GB s~! —
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High-throughput applications

Time-resolved experiments Continuous acquisition

(tomography at synchrotrons) (continuous-tilt electron tomography)

&

1 Flow field
_| plate

Novel macroscope, 4 ms exp. time

2-4x microscope, 4 ms exp. time

g (Y oy S I K

2-4x microscope, 18.3 ms exp. time

Tomograms of Bdellovibrio bacteriovorus
(Chreifi et al., 2019)

Reconstructions of a fuel cell
(Biihrer et al., 2019)

Data rates ~ 10GB s~! — Can we make reconstructions even faster?
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Fourier-domain filters




Fourier slice theorem

v

< Fourier transform

Py(w) = F(wcosf,wsin )
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Fourier slice theorem
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)

Steps in Gridrec

e filtering in Fourier space
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)

Steps in Gridrec
e filtering in Fourier space

e convolution with windowing
function
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)

Steps in Gridrec
e filtering in Fourier space

e convolution with windowing
function

e interpolation in Fourier space
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)

Steps in Gridrec

e filtering in Fourier space

convolution with windowing
function

interpolation in Fourier space

2D inverse FFT
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)

Steps in Gridrec
e filtering in Fourier space

e convolution with windowing
function

e interpolation in Fourier space
e 2D inverse FFT

e deapodisation

Poulami S Ganguly Ultra-fast reconstruction using Fourier domain filters 8



Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for
real-time tomographic imaging.” (2012)

Steps in Gridrec
e filtering in Fourier space

e convolution with windowing
function

e interpolation in Fourier space
e 2D inverse FFT
e deapodisation

FBP backprojection: O(N?Njy)
Gridrec 2D FFT: O(N?log N)
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Fourier domain algorithms

Marone, F., and M. Stampanoni. "Regridding reconstruction algorithm for

real-time tomographic imaging.” (2012)

Steps in Gridrec Reconstruction times for Ny projection angles
N =512 N =1024 N = 2048 N = 4096
o filtering in Fourier space
e convolution with windowing O e
function I B S D I I I
e interpolation in Fourier space |7 7 | |7 A :
e 2D inverse FFT P I e [
102 24 L 023« o~ FBP (GPU)
e deapodisation ‘ i eer
FBP backprojection: O(N?Ny)
Gridrec 2D FFT: O(N? log N)
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Fourier domain algorithms

Marone, F., and M. Stampanoni. " Regridding reconstruction algorithm for

real-time tomographic imaging.” (2012)

Steps in Gridrec Reconstruction times for N projection angles
N =512 N =1024 N = 2048 N = 4096
e filtering in Fourier space o o
. . . . 107
e convolution with windowing
107
function
& 100
e interpolation in Fourier space
e 2D inverse FFT e ° °
. . 102 0-2 02 02 o R GY)
e deapodisation = o

FBP backprojection: O(N?Njy)
Gridrec 2D FFT: O(N?log N)
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Filter computation

e Compute minimum-residual filter
h" = argmin [|p WwW'C,h|3

using projectors in Fourier domain
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Filter computation

e Compute minimum-residual filter
h" = argmin||p - Ww'C,h|3

using projectors in Fourier domain

e Speed up filter computation by expanding in suitable basis
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Filter computation

e Compute minimum-residual filter

h" = argmin||p - Ww'C,h|3

using projectors in Fourier domain

e Speed up filter computation by expanding in suitable basis
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Filter computation

e Compute minimum-residual filter
h" = argmin [|p — ww' C,h|3

using projectors in Fourier domain

e Speed up filter computation by expanding in suitable basis
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Results — 1: phantom

Noisy sinogram

G

ramp filter our filter

Sinogram with few angles

ramp filter our filter
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Results — 1: phantom

Noisy sinogram Mean squared error Structural similarity

Structural similarity index
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ramp filter our filter
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Sinogram with few angles

ramp filter our filter
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Results — 2: synchrotron data

(left to right) Gridrec reconstructions using a minimum-residual filter, the
Parzen filter, and additional phase retrieval
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High performance implementations

e Different implementations of the same algorithm result in
quantitatively different reconstructions
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High performance implementations

e Different implementations of the same algorithm result in
quantitatively different reconstructions

e Differences arise due to choice of discretisation and/or interpolation

e Mismatch between different backprojectors and real (physical)

forward operator

» Compute minimum-residual filters for standard implementations
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High performance implementations

e Different implementations of the same algorithm result in
quantitatively different reconstructions

e Differences arise due to choice of discretisation and/or interpolation

e Mismatch between different backprojectors and real (physical)

forward operator

» Compute minimum-residual filters for standard implementations
I Does not require knowledge of the implementation
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Implementation-specific filters




Results

Minimum-residual filters reduce the mismatch between operators
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Results

Minimum-residual filters reduce the mismatch between operators
=- more quantitatively similar reconstructions
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Results

Minimum-residual filters reduce the mismatch between operators

=- more quantitatively similar reconstructions

Foam phantom

/ =

Filter amplitude
o
N
S

Frequency

Minimume-residual filter shapes

ramp filter
Shepp-Logan filter
ASTRA FBP strip kernel
ASTRA FBP line kernel
ASTRA FBP linear kernel
iradon FBP

TomoPy Gridrec
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Results

Pixelwise standard deviation in reconstructions

strip line linear _iradon _gridrec
Std{xr y Xp Ty Xy » Xr ) X }
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Results

Pixelwise standard deviation in reconstructions

strip line
std{x5""P, x,"¢, x
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X

iradon gridrec
r ? Xr }

Minimume-residual filter

o Shepp-Logan filter 040 o 040
-0.35 -0.35
50 50

-0.30 -0.30

100 -0.25 100 -0.25
-0.20 -0.20

150 015 150 _0.15
200 -0.10 200 -0.10
-0.05 -0.05

250 - 0.00 250 - 0.00

0 100 200
Ultra-fast reconstruction using Fourier domain filters 14

Poulami S Ganguly



Results

Round-robin dataset from Tomobank
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Results

Round-robin dataset from Tomobank
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Conclusions




Summary and outlook

e Analytical algorithms despite their inability to handle imperfect data
are widely used in practice because they are fast

e One way to improve reconstruction quality of these algorithms is
by computing a minimume-residual filter for the available data

e The filter, once computed, can be reused for experimental setups
where the projection geometry and noise levels are similar
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Summary and outlook

e Analytical algorithms despite their inability to handle imperfect data
are widely used in practice because they are fast

e One way to improve reconstruction quality of these algorithms is
by computing a minimume-residual filter for the available data

e The filter, once computed, can be reused for experimental setups
where the projection geometry and noise levels are similar

e Implementation-specific filters reduce the mismatch between
forward and backprojection operators

e This leads to more quantitatively similar reconstructions

e Learn filter by optimising to more than one dataset

e More general approach for learning corrections to the backprojection
operator from data
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Thank you for your attention!
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